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The adjoint weighted equation for steady advection
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SUMMARY

An alternative variational framework suitable for pure advection is obtained by discarding the Galerkin
part of stabilized methods. The resulting scheme is similar to the least-squares approach, but with the
adjoint operator in the weighting slot. This formulation is not restricted to solenoidal (i.e. divergence free)
velocities. Initial numerical results for such problems show that the method is promising. Copyright q
2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Two common approaches to computing transport phenomena are based on least-squares and stabi-
lized formulations. The former are robust and stable [1], but may require sophisticated techniques
to retain desired accuracy in some cases [2]. On the other hand, the performance of stabilized meth-
ods is determined by the choice of the mesh-dependent stabilization parameters that are inherent
in their formulation [3].

The adjoint weighted equation (AWE) formulation, which is an alternative variational framework
suitable for pure advection, may be viewed as a combination of the two. Work on the related
nearly optimal Petrov–Galerkin method [4] prompted the observation motivating this concept, that
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in the advective limit certain stabilized methods, including the streamline upwind Petrov–Galerkin
method [5], perform well for arbitrarily large values of the stabilization parameter, so that the
Galerkin part may be discarded. The resulting scheme is similar to the least-squares approach, but
employs the adjoint operator in the weighting slot.

The hyperbolic boundary-value problem for scalar advective transport, in which the velocity
field need not be solenoidal (i.e. divergence free), is formulated in Section 2, and common
numerical approaches are reviewed. The AWE formulation is introduced in Section 3, and several of
its features are discussed. Numerical tests described in Section 4 show promising results. Section 5
offers conclusions.

2. BOUNDARY-VALUE PROBLEM

Let � ⊂ Rd be a d-dimensional, open, bounded region with smooth boundary �. The outward unit
vector, normal to �, is denoted n. The advective velocity field a is given. The velocity field is often
assumed to be solenoidal (∇ · a= 0), describing an incompressible flow. This restriction is not
imposed in the following. Thus, the formulation presented here is applicable to both compressible
and incompressible flow fields.

The boundary � is partitioned according to the characteristics into an inflow boundary

�− = {x∈ �|a(x) · n(x)<0} (1)

meas(�−)>0, and an outflow boundary, �+ = �\�−; see Figure 1.

2.1. Scalar advective transport

Consider the hyperbolic boundary-value problem: find u:�→ R that satisfies

∇ · (au)= f in � (2)

u = g on �− (3)

Here, f :� → R and g:�− → R are prescribed.

Γ

Γ +

Figure 1. Boundary partition.
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2.2. Weak form and Galerkin approximation

The variational formulation is stated in terms of the sets of functions

S={u ∈ H1(�)|u = g on �−} (4)

V={w ∈ H1(�)|w = 0 on �−} (5)

The standard weak form of the scalar advective problem (2)–(3) is: find u ∈S such that

(w,∇ · (au))= (w, f ) ∀w ∈V (6)

Here, (· , ·) is the L2(�) inner product.
In order to examine the stability of the continuous case (6), consider the left-hand side operator

(see, e.g. [6])

(w,∇ · (aw)) = (w, a · nw)� − (∇w, aw)

= (w, a · nw)� − 1
2 (∇(w2), a)

= 1
2 (w, a · nw)� + 1

2 (w, (∇ · a)w) (7)

The first term is positive, but related to a weak norm that does not provide control on the variation
of the function (see, e.g. [7]). The second term is indefinite unless the velocity field is solenoidal.
Consequently, small variations in the data can lead to large variations in the solution.

The standard Galerkin finite element approximation is constructed by replacing the functions in
the weak form (6) with finite-dimensional counterparts, typically containing continuous piecewise
polynomials. The support of these functions is defined by a mesh partition of the domain � into
non-overlapping regions (element domains), with mesh parameter h. The space of approximate
weighting functions is denoted by Vh ⊂V. The set of approximate trial solutions is denoted
by Sh . The standard finite element method is: find uh ∈Sh such that

(wh,∇ · (auh))= (wh, f ) ∀wh ∈Vh (8)

This method inherits the instability of the continuous problem and exhibits spurious oscillations
in computation.

2.3. Stabilized methods

Stabilized finite element methods can alleviate this difficulty (see, e.g. a recent review [3]). The
streamline upwind Petrov–Galerkin method [5] for the scalar advective problem (2)–(3) is: find
uh ∈Sh such that

(wh + �a · ∇wh,∇ · (auh))= (wh + �a · ∇wh, f ) ∀wh ∈Vh (9)

The terms added to the standard formulation preserve consistency and enhance stability.
Suitable definition of the mesh-dependent stabilization parameter, �, is a subject of ongoing
investigations [8].

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:683–693
DOI: 10.1002/fld



686 A. A. OBERAI, P. E. BARBONE AND I. HARARI

2.4. Least-squares formulation

A standard least-squares formulation is robust and stable, free of the deficiencies of the weak
form (6) [1], and independent of a mesh-dependent parameter, �. A least-squares principle for the
advective problem (2)–(3) is to seek a minimizer of the quadratic functional

J (u)=‖∇ · (au) − f ‖2 (10)

in terms of the L2(�) norm.
The necessary minimum condition is to seek u ∈S such that

(∇ · (aw),∇ · (au))= (∇ · (aw), f ) ∀w ∈V (11)

Setting u =w in the first term of the least-squares formulation (11) gives

(∇ · (aw),∇ · (aw)) = ‖∇ · (aw)‖2

= ‖a · ∇w + (∇ · a)w‖2

� 1

1 + �
‖a · ∇w‖2 − ‖∇ · a‖2

�
‖w‖2 ∀�>0 (12)

The last line follows from the inequality

‖u + v‖2� 1

1 + �
‖u‖2 − 1

�
‖v‖2 ∀�>0 (13)

See, e.g. [9]. The first term in (12) is non-negative. Stability depends on the data. Stability clearly
holds for a solenoidal velocity field and remains so for sufficiently small ∇ · a.

Least-squares formulations often lead to overly dissipative solutions. Sophisticated techniques
such as negative norms provide desired accuracy in some cases [2], but may entail implementational
difficulties, for example in the specification of boundary conditions.

3. ADJOINT WEIGHTED EQUATION

Examining Petrov–Galerkin methods with the goal of obtaining optimal weighting functions [4]
leads to the observation that the streamline upwind Petrov–Galerkin method for the advective prob-
lem performs well for arbitrarily large values of the stabilization parameter, yielding a formulation
which retains only the stabilization terms.

3.1. Formulation

This alternative variational framework, the AWE formulation is: find u ∈S such that

(a · ∇w,∇ · (au))= (a · ∇w, f ) ∀w ∈V (14)
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This formulation, motivated by the streamline upwind Petrov–Galerkin method, is similar to one
derived by least squares, but weighted by the adjoint operator. The least-squares (11) and AWE (14)
formulations coincide for solenoidal velocity fields.

3.2. Euler–Lagrange equations

The Euler–Lagrange equations emanating from the AWE formulation (14) are obtained by inte-
gration by parts, assuming sufficient smoothness of the functions involved. Doing so yields the
following boundary-value problem:

∇ · (a∇ · (au)) = ∇ · (a f ) in � (15)

a · n∇ · (au) = a · n f on � (16)

u = g on �− (17)

3.3. Stability

Setting u =w in the first term of the AWE formulation (14) gives

(a · ∇w,∇ · (aw)) = ‖a · ∇w‖2 + (a · ∇w, (∇ · a)w)

� ‖a · ∇w‖2 − �‖a · ∇w‖2 − 1

4�
‖(∇ · a)w‖2

� (1 − �)‖a · ∇w‖2 − ‖∇ · a‖2
4�

‖w‖2 ∀�>0 (18)

The second line follows from the inequality

(u, v)� − �‖u‖2 − 1

4�
‖v‖2 ∀�>0 (19)

See, e.g. [9]. Taking �<1, the first term in (18) is non-negative. As in the least-squares formula-
tion (11), stability depends on the data. Stability clearly holds for a solenoidal velocity field and
remains so for sufficiently small ∇ · a.

3.4. Discretization

The Galerkin finite element approximation of the AWE formulation (14) is: find uh ∈Sh such that

(a · ∇wh,∇ · (auh))= (a · ∇wh, f ) ∀wh ∈Vh (20)

4. COMPUTATIONAL EXAMPLES

A series of computations examines the numerical performance of the proposed method in compar-
ison to the least-squares formulation. These employ structured and distorted meshes of four-noded
quadrilaterals, for two scalar advection problems in square domains, with velocity fields that are
not solenoidal.
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Figure 2. Linear velocity field (21) for the exponentially varying solution.

4.1. Exponentially varying solution

As the first problem we consider a case for which the analytical solution is known. The velocity
is given by (see Figure 2)

a=
{

(y − x)/2 − 0.2

(x − y)/2 + 0.7

}
(21)

Note that the velocity field is linear and is exactly represented by bilinear finite element functions.
Further, ∇ · a=−1 and hence the AWE solution is expected to be different from the LS solution.
The domain is a unit square. The inflow boundary is comprised of the edges y = 0, x = 1, and the
upper part of x = 0, 0.4<y<1. There is no forcing term ( f = 0), and the boundary conditions are
specified on the inflow boundary so that the exact solution is

u = exp(2(x + y)) (22)

The domain is discretized by two sets of seven increasingly refined meshes composed of bilinear
quadrilateral finite elements. The first set consists of nested uniformmeshes from 4× 4 to 256× 256
elements, with the element edges halved from one level of refinement to the next. In the second
set the same refinement levels are used but the elements are randomly distorted by an average of
10% of the edge length. One such mesh corresponding to 16 elements in each direction is shown
in Figure 3. Once the finite element solution is evaluated, its error is calculated using Gaussian
quadrature. To check the accuracy of this computation, results with 4-point (per direction) and
5-point rules were compared and no significant difference was found.

An example of the solutions on the 4× 4 distorted mesh along x = 0.5 is shown in Figure 4.
Errors for AWE and LS solutions on uniform meshes are reported in Figure 5, measured in the L2

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:683–693
DOI: 10.1002/fld



ADJOINT WEIGHTED EQUATION FOR STEADY ADVECTION 689

Figure 3. A randomly distorted 16× 16 finite element mesh for the problem with the
exponentially varying solution.
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Figure 4. Solutions on the 4× 4 distorted mesh along x = 0.5, for the problem with the
exponentially varying solution.
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Figure 5. Error in the uniform meshes for the problem with the exponentially varying solution.
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Figure 6. Error in the distorted meshes for the problem with the exponentially varying solution.

norm and H1 seminorm. All curves have a slope close to 2, which points to superconvergence in
the H1 seminorm on uniform meshes. We also observe that while the rate of convergence for the
AWE and LS solutions is the same, the former appear to have a smaller error (about 7–8 times
smaller) for all meshes.

Figure 6 shows error in the solution with distorted meshes, once again measured in the L2 norm
and H1 seminorm. We observe that superconvergence in the H1 seminorm is lost, however, the
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Figure 7. Velocity field for the circular plateau problem.

Figure 8. AWE solution for the circular plateau problem.

rate of convergence is optimal. Further, the AWE solution is more accurate than the LS solution
for coarse meshes. The convergence rates in the L2 norm are also optimal. Here, the superiority
of AWE over LS is apparent throughout the range of refinement.
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Figure 9. Least-squares solution for the circular plateau problem.

4.2. Circular plateau

The second problem we consider is more challenging. Here, the exact solution is in the form of a
sharp circular plateau of diameter 0.4 in the centre of a unit square. The magnitude of the advected
scalar u varies from unity in the background to 5 on the plateau.

The velocity field for this problem, with no forcing term, was computed on a fine mesh with u
assigned to the desired profile. This velocity field, shown in Figure 7, is also not solenoidal.

The advection problem was solved on the unit square with 50 uniform bilinear finite elements
in each direction. The y = 0 edge was treated as inflow boundary and the solution was set to unity
here. The AWE solution is shown in Figure 8. We observe that the location and the shape of the
plateau are captured accurately although there are some spurious oscillations in the solution. The
LS solution for this problem is shown in Figure 9. We observe that the solution is overly diffuse
and the shape of the circular plateau is not captured accurately. Once again the superiority of the
AWE solution over the LS solution is clear.

5. CONCLUSIONS

The adjoint weighted equation is an alternative variational framework for computing pure advection
transport, motivated by the study of Petrov–Galerkin methods. This scheme is similar to the
conventional least-squares approach, but employs the adjoint operator in the weighting slot. The
concept may also be viewed as a stabilized method in which the Galerkin part was discarded,
precluding the need for mesh-dependent stabilization parameters.

The adjoint weighted equation is not restricted to solenoidal (i.e. divergence free) velocities.
Preliminary analysis indicates that the adjoint weighted equation shares the robustness of the
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least-squares approach, yet in computational tests provides superior numerical performance on the
problems considered.
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